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15 Abstract 

16 Water balance models are commonly employed to improve understanding 
17 of drivers behind changes in the hydrologic cycle across multiple space and 
18 time scales. Generally, these models are physically-based, a feature that can 
19 lead to unreconciled biases and uncertainties when a model is not encoded 
20 to be faithful to changes in water storage over time. Statistical methods 
21 represent one approach to addressing this problem. We fnd, however, that 
22 there are very few historical hydrological modeling studies in which bias 
23 correction and uncertainty quantifcation methods are routinely applied to 
24 ensure fdelity to the water balance. Importantly, we know of none (aside 
25 from preliminary applications of the model we advance in this study) ap-
26 plied specifcally to large lake systems. We fll this gap by developing and 
27 applying a Bayesian statistical analysis framework for inferring water balance 
28 components specifcally in large lake systems. The model behind this frame-
29 work, which we refer to as the L2SWBM (large lake statistical water balance 
30 model), includes a conventional water balance model encoded to iteratively 
31 close the water balance over multiple consecutive time periods. Throughout 
32 these iterations, the L2SWBM can assimilate multiple preliminary estimates 
33 of each water balance component (from either historical model simulations 
34 or interpolated in situ monitoring data, for example), and it can accommo-
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35 date those estimates even if they span di� erent time periods. The L2SWBM 
can also be executed if data for a particular water balance component are 
unavailable, a feature that underscores its potential utility in data scarce 
regions. Here, we demonstrate the utility of our new framework through a 
customized application to the Laurentian Great Lakes, the largest system of 
lakes on Earth. Through this application, we fnd that the L2SWBM is able 
to infer new water balance component estimates that, to our are knowledge, 
are the frst ever to close the water balance over a multi-decadal historical 
period for this massive lake system. More specifcally, we fnd that posterior 
predictive intervals for changes in lake storage are consistent with observed 
changes in lake storage across this period over simulation time intervals of 
both 6 and 12 months. In additional to introducing a framework for de-
veloping defnitive long-term hydrologic records for large lake systems, our 
study provides important insights into the origins of biases in both legacy 
and state-of-the-art hydrological models, as well as regional and global hy-
drological data sets. 

Keywords: hydrologic cycle, large lakes, statistical modeling, Bayesian 
inference, water balance 

1. Introduction 

Hydrological models that simulate and forecast the water balance across 
a variety of space and time scales are needed to facilitate water resources 
management planning and, ultimately, to ensure human and environmental 
health (Vörösmarty et al., 2000; Pekel et al., 2016). This need is particularly 
pronounced in regions where rapid population growth coincides with changes 
in the spatiotemporal distribution of fresh water, and where the sustainabil-
ity of future water supplies is uncertain (Schewe et al., 2014). To address 
this need, hydrological models need to clearly di� erentiate components of the 
hydrologic cycle that are often confounded (including, for example, evapo-
transpiration and irrigation water demand) and to quantify changes in those 
components over time (Nijssen et al., 2001; Kebede et al., 2006; Raes et al., 
2006; Li et al., 2007; Gronewold and Stow, 2014). 

�Corresponding author. Tel.: +1-734-764-6286 
Email address: drewgron@umich.edu (Andrew D. Gronewold) 

Preprint submitted to Advances in Water Resources January 8, 2020 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

mailto:drewgron@umich.edu


66 Global, continental, and basin-scale water balance modeling research typi-
67 cally focuses on improving representation of terrestrial and atmospheric phys-
68 ical processes collectively governing precipitation, evapotranspiration, and 
69 streamfow (Kim and Stricker, 1996; Vörösmarty et al., 1998; Crow et al., 
70 2008; Senay et al., 2011; Milly and Dunne, 2017). This body of research, 
71 while providing foundational hydrologic data for much of the planet’s land 
72 surface, rarely explicitly resolves mass and energy fuxes over large freshwater 
73 surfaces (Makhlouf and Michel, 1994; Xu and Singh, 1998; Arnell, 1999; Guo 
74 et al., 2002). Put di� erently, we fnd that the primary physical processes 
75 driving the water balance of large lakes, including over-lake evaporation (i.e. 
76 turbulent heat fuxes), over-lake precipitation, and predominant channel lake 
77 infows and outfows, are represented poorly (if at all) in large-scale terrestrial 
78 land surface models and corresponding data sets. 
79 There are, however, several state-of-the-art models that represent these 
80 processes specifcally for lakes and for their interactions with the atmosphere. 
81 One particular example is WRF-lake, a one-dimensional (1-D) physically-
82 based lake model that, in previous studies (Gu et al., 2013; Xiao et al., 
83 2016), has been coupled with the Weather Research and Forecasting (WRF) 
84 model. A similar one-dimensional scheme has been applied to resolve large 
85 lakes (Holman et al., 2012; Notaro et al., 2013) within the Abdus Salam 
86 International Center for Theoretical Physics Regional Climate Model (ICTP 
87 RegCM4). 
88 There have also been signifcant evolutions in three-dimensional lake mod-
89 els, including the transition of the National Oceanic and Atmospheric Ad-
90 ministration (NOAA) Great Lakes Operational Forecasting System (GLOFS) 
91 from the Princeton Ocean Model (POM) to the Finite-Volume Community 
92 Ocean Model (or FVCOM; for details see Kelley et al., 2018), as well as 
93 the operationalization of the Nucleus for European Modelling of the Ocean 
94 (NEMO) model (Dupont et al., 2012) within Environment and Climate Change 
95 Canada’s Water Cycle Prediction System (WCPS, described in Durnford 
96 et al., 2018). 
97 While many of these (and other) existing lake models have been found to 
98 represent key physical processes, they are rarely (if at all) evaluated within 
99 the context of the overall hydrologic cycle, and reconciliation of changes in 

100 lake storage over multiple time periods. This missing piece of context in most 
101 lake modeling studies limits the extent to which scientists and practitioners, 
102 along with the general public, understand modes of variability in the storage 
103 of nearly all of the Earth’s fresh unfrozen surface water (Gibson et al., 2006; 
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104 Swenson and Wahr, 2009; Xiao et al., 2018). Filling this gap requires a 
105 focused e �ort on lake water balance models that resolve physical processes 
106 governing lake storage at appropriate space and time scales (Piper et al., 
107 1986; Nicholson et al., 2000; Gibson et al., 2006; Peng et al., 2019). 
108 Here, we address this gap by introducing a framework that employs a 
109 novel formulation of a lake water balance model in which historical monthly 
110 water balance components are estimated through Bayesian inference (Gel-
111 man et al., 2004). Empirical data sets and historical model simulations, if 
112 available, are incorporated into the framework through likelihood functions 
113 and prior probability distribution functions. This approach leads not only 
114 to probabilistic historical water balance component estimates that preserve 
115 spatial and temporal correlation across a lake (or lake system), but also to 
116 quantifcation of bias and uncertainty in the models and data sets that had 
117 previously been developed for that lake. 
118 It is informative to note that a preliminary prototype of our framework 
119 was applied in a study assessing rapid water level changes between 2013 
120 and 2015 on Lakes Superior, Michigan, and Huron (Gronewold et al., 2015, 
121 2016). An analysis of an evolution of that prototype, which focused primarily 
122 on model selection, was presented in Smith and Gronewold (2018). The 
123 framework we present here is di� erentiated from the prototype in Gronewold 
124 et al. (2016) by (among other features) two key improvements. The frst is a 
125 computationally-eÿcient fltering method (which we periodically refer to as 
126 a “rolling inference window”) that facilitates inference over multi-decadal 
127 periods. The second is a skill assessment that refects both the relative 
128 homoscedasticity of model residuals, as well as the extent to which the model 
129 closes a lake’s water balance over consecutive multi-month time periods. 
130 We also acknowledge that there are previous studies utilizing similar sta-
131 tistical methods, such as those that debias continental remote sensing data 
132 (Pan and Wood, 2006; Coccia et al., 2015). These studies, however, are typ-
133 ically focused exclusively on land surface processes and do not adequately 
134 resolve large lakes. The framework we develop here, therefore, is further dis-
135 tinguished by its focus on large lakes, including its ability to model multiple 
136 connected lakes in series. Our representative application also represents the 
137 frst time a water balance model has been applied systematically to the en-
138 tire Laurentian Great Lakes system (the largest system of lakes in Earth) 
139 that “closes” the water balance over multiple time periods while reconciling 
140 discrepancies between alternate measurements and model simulations of the 
141 same water balance component. The results of our application serve as both 
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142 a solution to a long-standing water resources management problem for the 
143 Great Lakes, and as a stepping stone towards solving similar problems in 
144 large lake systems around the world. 

145 2. Methods 

146 In the following sections, we frst (section 2.1) provide an overview of the 
147 generic formulation of our new framework. We then (section 2.2) describe the 
148 customization of our framework to the water balance of the entire Laurentian 
149 Great Lakes system. Section 2.2 also includes a description of our approach 
150 to evaluating the new framework using the results from our application to 
151 the Laurentian Great Lakes. 

152 2.1. The model 

153 We developed our modeling framework by frst modifying the conventional 
154 formulation of a lake water balance model to represent changes in storage over 
155 a time window of w months: 

j+
X 

w−1 

�Hj,w = Hj+w − Hj = (Pi − Ei + Ri + Ii − Qi + Di + ǫi) (1) 
i=j 

156 where �Hj,w represents the “true” change in lake storage over a period of 
157 w months (starting with month j), Hj and Hj+w represent “true” monthly 
158 average lake water levels (in mm) at the beginning of months j and j + w 
159 (respectively), j 2 [1, T − w + 1], and T is the total number of months over 
160 which the model is run. Our use of i and j as month number indices within 
161 the context of equation 1 accommodates this rolling multi-month window 
162 approach. The value of the month index j in equation 1 can not, by defnition, 
163 exceed T − w + 1. We index monthly water balance components outside of 
164 the context of equation 1 using t 2 [1, T ]. 
165 The “true” values for monthly water balance components (expressed in 
166 mm over a lake surface area) in equation 1 include over-lake precipitation P , 
167 over-lake evaporation E, lateral tributary runo � R, infow from an upstream 
168 channel I, discharge through a downstream channel Q, and the total of inter-
169 basin diversions and consumptive uses D. The model also includes a process 
170 error term (ǫ) to account for potential sources of water balance variability 
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171 not explained by components P, E, R, I, Q, and D alone including, for ex-
172 ample, thermal expansion, glacial isostatic rebound, and groundwater fuxes 
173 (Quinn and Guerra, 1986; Mainville and Craymer, 2005). These terms could 
174 be added to equation 1 on a case-by-case basis depending on whether they 
175 are expected to be signifcant. Probabilistic estimates of each water balance 
176 component in equation 1 are inferred in a Bayesian framework (Press, 2003; 
177 Gelman et al., 2004) in which prior probability distributions and likelihood 
178 functions are parameterized using legacy models and data sets, as well as ex-
179 pert knowledge and opinion (specifcally for prior probability distributions). 

180 2.1.1. Likelihood functions 

181 The likelihood function for the change in storage within a given lake over 
182 a period of w months is: 

y N�H,j,w = yH,j+w − yH,j ˘ (�Hj,w, τ�H,w) (2) 

183 in which the observed change in storage y�H starting in month j, and across 
184 a rolling window of length w, is the di� erence between water level measure-
185 ments (yH) at the beginning of months j + w and j. We model this value 
186 with a normal distribution with mean �Hj,w and precision τ�H,w. This ap-
187 proach allows for an explicit representation of uncertainty in water level data 
188 that can be di� erentiated from uncertainty in water balance component es-
189 timates. It is informative to note that rather than using variance (σ2), we 
190 parameterize normal distributions using precision (τ = 1/σ2) following con-
191 ventional practice for Bayesian inference (Casella and Berger, 2002; Gelman 
192 et al., 2004; Qian et al., 2009) 

′ ′ ′ 
193 We then introduce three new parameters, I , Q and D , to represent 
194 connecting channel infows, outfows, and diversions (respectively) in units 
195 of m3/s. We use these units because most water management practitioners 
196 are accustomed to recording and assessing these values in m3/s, rather than 
197 mm over each lake surface. We encode the empirical relationship (i.e. the 
198 conversion of units) between parameters I, Q, and D and (respectively) I ′ , 

′ ′ 
199 Q and D using the surface area of each lake and the number of seconds in 
200 a particular month. 
201 The likelihood functions for water balance components on the right-hand 
202 side of equation 1 (represented collectively by θ 2 P, E, R, I ′, Q′, D′) is: 
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y n ˘ N(θt + ηn , τn ) (3) t,� �,ct t,� 

n 
203 where yt,� is data source n 2 [1, N ] for component θ at time step t, N is the 

total number of data sources for that component, ηn is the bias of the nth 
204 �,ct 

data source in calendar month c, and τn is the data source precision at time 205 t,� 

206 step t. 

207 2.1.2. Prior probability distributions (standard formulation) 

208 In Bayesian statistics, parameters are frequently modeled with normal 
209 probability distributions to support inference across a broad range of poten-
210 tial values. Alternate probability distribution families can be used, however, 
211 to refect knowledge (or beliefs) that a parameter might have a more limited 
212 range of values. 
213 We model E, I ′ , Q′ , and D′ with normal prior probability distributions: 

π(Et) = N(µE,ct , τE,ct /2) (4) 

π(It 
′ ) = N(µI ,ct , τI,ct ) (5) ′ 

π(Q ′ t) = N(µQ′ ,ct , τQ,ct ) (6) 

π(Dt 
′ ) = N(µD′ ,ct , τD′ ,ct ) (7) 

214 where prior means µct and precisions τct for each calendar month c are either 
215 calculated empirically using historical data records, or informed by expert 
216 opinion (for further reading on objective and subjective prior probability 
217 distributions, see Press, 2003). This approach allows for the possibility that 
218 lake evaporation can be both positive (i.e. a loss of water from a lake) and 
219 negative (i.e. when there is warm overlying air and condensation occurs). 
220 This approach is also suited for relative high values of connecting channel 
221 fows Q′ and diversions D′ . Future users of our framework could, should they 
222 choose to do so, select di� erent prior probability distribution families (such 
223 as lognormal, for example). 
224 We divide precision in half (i.e. double the variance) for prior probabil-
225 ity distributions on over-lake evaporation E because, for many large lakes, 
226 evaporation has a very strong historical seasonal cycle with relatively low 
227 variability. That historical low variability could, when quantifed in the pa-
228 rameters of a prior probability distribution, overly-constrain the range of 
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229 inferred monthly evaporation estimates during a later period, particularly in 
230 lakes where climate change has led to a systematic increase in evaporation 
231 over time (Milly et al., 2008). 
232 Total lateral tributary runo values aggregated over a lake basin and over 
233 monthly time steps are almost certainly positive, and we therefore model R 
234 with a log-normal prior probability distribution: 

π(Rt) = LN(µln(R),ct , τln(R),ct ) (8) 

235 with prior means µln(R),ct and precisions τln(R),ct . These values can be calcu-
236 lated for each calendar month c empirically using historical data records, or 
237 formulated to represent expert opinion. 
238 For over-lake precipitation, we use a gamma prior probability distribution 
239 (Husak et al., 2007): 

π(Pt) = Ga(ψ1 , ψ2 ) (9) ct ct 

240 with shape ψ1 and rate ψ2 (following Thom, 1958) defned as: 

! 

r 

1 4φctψ1 
ct 

= 1 + 1 + 
4φct 3 

φct = ln(µP,ct ) − µln(P ),ct 

ψ2 ψ1 = /µP,ctct ct 

241 where µP,ct is the mean historical precipitation for each month, and µln(P ),ct 

242 is the mean of the logarithm of precipitation for each calendar month c. 
243 We then model the bias of each contributing data set using normal prior 
244 probability distributions: 

π(ηn �,ct 
) = N(0, 0.01) (10) 

245 with mean 0 and precision 0.01. We note that this precision is equivalent to a 
246 standard deviation of 10, and is in units of mm over a lake surface for ηP , ηE , 

and ηR, while it is in units of m
3/s for ηQ′ , ηI , and ηD′ . Users of our frame-247 ′ 

8 



248 work can customize these prior probability distributions by selecting mean 
249 and precision values that are unique to each bias term. Our representative 
250 application in the next section provides an example. 
251 Finally, following Gelman (2006), we modelled τ�H,w and τt,� using a 
252 gamma Ga(0.1, 0.1) prior probability distribution with shape and scale pa-
253 rameter both equal to 0.1. Similarly, we constrained water balance model 
254 errors to one of 12 values corresponding to each of the 12 calendar months, 
255 with each error term having a common vague normal prior probability dis-
256 tribution with mean 0 and precision 0.01: 

ǫt = ǫct 

π(ǫ Nct ) = (0, 0.01) (11) 

257 We recognize that bias estimates in our model may be impacted by the 
258 classic problem of bias-variance tradeo � (Geman et al., 1992). We view imple-
259 mentation of solutions to this problem, such as bias-variance decomposition 
260 (Valentini and Dietterich, 2004), as a potential future step in our research. 

261 2.2. Representative application: the Laurentian Great Lakes 

262 To demonstrate the utility of our model, we customized it to the entire 
263 Laurentian Great Lakes system (hereafter referred to simply as the “Great 
264 Lakes”) to infer new monthly water balance components for the period 1980 
265 through 2015. The Great Lakes system (fgure 1) includes Lakes Superior, 
266 Michigan, Huron, St. Clair, Erie, and Ontario. Here, we follow conventional 
267 practice in Great Lakes hydrological modeling research at coarse time scales 
268 (e.g. monthly) by representing Lakes Michigan and Huron as a single lake 
269 (Lake Michigan-Huron) given the depth and breadth of the channel (i.e. 
270 the Straits of Mackinac) that connects them (Quinn and Edstrom, 2000; 
271 Pietroniro et al., 2007). Collectively, the Great Lakes represent the largest 
272 system of lakes on Earth; Lakes Superior and Michigan-Huron alone are the 
273 two largest lakes on Earth by surface area (Gronewold et al., 2013). 
274 We encoded lake-to-lake connectivity within the Great Lakes system (i.e. 
275 through the St. Marys, St. Clair, Detroit, and Niagara Rivers) by defning 
276 the infow to each lake through a major connecting channel (I ′) as the out-
277 fow from the adjacent upstream lake (Q′). For example, the infow to Lake 
278 Michigan-Huron through the St. Marys River at each monthly time step t is 
279 encoded as Q′ 

SUP,t, the outfow from Lake Superior. There is no upstream 
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280 connecting channel fowing into Lake Superior and therefore, in equation 1 
281 for Lake Superior, ISUP = 0. We obtained surface areas for each of the Great 
282 Lakes (table 1) from the National Oceanic and Atmospheric Administration 
283 (NOAA) Great Lakes Environmental Research Laboratory (GLERL) to cal-
284 culate relationships between Q′ , D′ , Q and D . For details, see Hunter et al. 
285 (2015). 

286 2.2.1. Model modifcations for the water balance of Lake St. Clair 

287 We model Lake St. Clair di� erently from the other Great Lakes because 
288 its surface area is relatively small (table 1), and because its hydrologic cycle is 
289 dominated by infow from the St. Clair River and outfow to the Detroit River. 
290 More specifcally, rather than di� erentiating precipitation, evaporation and 
291 runo � for Lake St. Clair, we represented them collectively as a single term 
292 commonly referred to as net basin supply (NBS ′ = P ′ − E ′ + R′). We model 
293 the NBS ′ for Lake St. Clair using modifed versions of equations 1 and 2 (in 
294 units of m3/s) as follows: 

j+w−1 

�H ′
X 

′ ′ ′ ′ 
j,w = (NBSi + QM HU − Q + Di + ǫST Cii i  ) (12) 

i=j 

y�H′,j,w ˘ N(�H ′ j,w, τ�H′ ,w) (13) 

′ 
295 where QMHU is the outfow from Lake Michigan-Huron (i.e. the infow to 
296 Lake St. Clair through the St. Clair River). 
297 We model Lake St. Clair NBS ′ values with a normal prior probability 
298 distribution: 

′ π(NBS ) = N(µ ′  t NBS ,ct , τNBS′,ct ) (14) 

299 and a normal likelihood function: 

y n ′ ˘ N(NBS ′ + ηn n 
t,NBS t NBS ′, , τ  ct t,NBS ′) (15) 

300 where ηn ′ 
NBS ′,ct 

is the bias of NBS estimate n 2 [1, N ] in calendar month c, 
301 N is the total number of NBS ′ data sources, and τn t,NBS ′ is the precision of 
302 each data source. 
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303 We then adapt the prior probability distributions from equations 10 and 
′ 

304 11 for NBS data bias and Lake St. Clair model error such that the prior 
305 precision for each (τ = 0.0625 = 1/σ2) is equivalent to a standard deviation 
306 (σ) of 4 m3/s, or roughly 10mm of water on the surface of Lake St. Clair 
307 (table 1) over the course of a month: 

π(ηn ′ ) = NNBS ,ct 
(0, 0.0625) (16) 

π(ǫST C ) = N(0, 0.0625) (17) 

308 2.2.2. Data for application to the Great Lakes 

309 We obtained beginning-of-month lakewide-average water level data (yH ) 
310 for each of the Great lakes, as well as historical records of interbasin diver-
311 sions (yD′ ), channel fows (yQ′ ), and estimates of Lake St. Clair’s net basin 
312 supply from the Coordinating Committee on Great Lakes Basic Hydraulic 
313 and Hydrologic Data (CCGLBHHD). For further reading on the CCGLB-
314 HHD, see Gronewold et al. (2018). 
315 The water level data we obtained from the CCGLBHHD is derived from 
316 water level measurements at gauges located around the coastline of each of 
317 the Great Lakes that are maintained by both the NOAA National Ocean Ser-
318 vice Center for Operational Oceanographic Products and Services (NOAA-
319 NOS CO-OPS) and the Canadian Department of Fisheries and Oceans’ 
320 Canadian Hydrographic Service (DFO-CHS). We recognize that alternate 
321 sources of water level information are available, including those based on 
322 satellites and other remote sensing products (Alsdorf et al., 2001; Crétaux 
323 et al., 2011; Schwatke et al., 2015). For this application, we utilize the rela-
324 tively robust network of Great Lakes water level gauging stations synthesized 
325 in the CCGLBHHD records, and leave assimilation of remotely-sensed wa-
326 ter levels to future research on either the Great Lakes, or other large lake 
327 systems. 
328 Similarly, we obtained data on diversions into, out of, or within each lake 
329 basin from the CCGLBHHD including the Ogoki River and Long-Lac diver-
330 sions into Lake Superior, the Chicago River diversion out of Lake Michigan-
331 Huron, and the Welland Canal that runs parallel the Niagara River (fgure 
332 1). 
333 We then obtained two sets of connecting channel fow data. The frst (y1 Q ′ ) 
334 includes estimates for each of the Great Lakes connecting channels derived 
335 by the CCGLBHHD using a variety of standard methods. These methods 
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336 include the aggregation of discrete fow measurements through dams and 
337 marine navigation locks, and the application of stage-fall discharge equa-
338 tions. The second set of connecting channel fow estimates (y2 Q ′ ) is based on 
339 Acoustic Doppler Velocity Meters (ADVMs) located at International Gaug-
340 ing Stations (IGS) maintained through a partnership between the United 
341 States Geological Survey (USGS) and Water Survey Canada (WSC). These 
342 IGS measurements are available only for the St. Marys, St. Clair, and Detroit 
343 Rivers. 
344 We then obtained a set of data for over-lake precipitation, over-lake evap-
345 oration, and runo � from the NOAA-GLERL Great Lakes Monthly Hydrome-
346 teorological Database (or GLM-HMD, described in Hunter et al., 2015). The 
347 GLM-HMD utilizes a suite of models and interpolation schemes to generate 
348 1-dimensional estimates of water balance components over the land and lake 
349 surfaces of each of the Great Lakes. More specifcally, over-lake precipitation 
350 estimates in the GLM-HMD are based on Thiessen weighting (Croley II and 
351 Hartmann, 1985) of land-based meteorological station data (for further dis-
352 cussion, see Holman et al., 2012). Over-lake evaporation simulations in the 
353 GLM-HMD are derived from the legacy Large Lakes Thermodynamics Model 
354 (LLTM) which utilizes wind speed, dew point, cloud cover, and lake surface 
355 temperature to simulate heat exchange and ice cover across the lakes (Croley 
356 II, 1989, 1992). Finally, runo � estimates in the GLM-HMD are derived from 
357 an area-ratio based interpolation of USGS and WSC streamfow gages across 
358 the basin (for further reading, see Fry et al., 2013). 
359 We obtained additional data for over-lake precipitation, over-lake evap-
360 oration, and runo � from two Canadian federal government products; the 
361 Canadian Precipitation Analysis (or CaPA) and GEM-MESH. GEM-MESH 
362 is a confguration of the Modélisation Environmentale-Surface et Hydrologie 
363 (MESH) forced by the Canadian Global Environmental Multiscale (GEM) 
364 numerical weather prediction model (Deacu et al., 2012; Lespinas et al., 
365 2015). 
366 We utilized each of these data sets during our model inference routine 
367 (described below in section 2.2.4) for the period 1980 to 2015. We also used 
368 a di� erent subset of these data for calculating prior probability distribution 
369 hyper-parameters, as described in the following section. A complete sum-
370 mary of the data used for our representative application to the Great Lakes, 
371 including an indication of how each data set was used in either prior proba-
372 bility distributions or likelihood functions, is included in Appendix A. 
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373 2.2.3. Prior probability distributions: application to the Great Lakes 

374 For our application to the Great Lakes, we employed prior probability dis-
375 tributions for model parameters P , E, R, Q′ , and D′ prescribed by equations 
376 4 through 9. For P , E, and R, we calculated hyper-parameters empirically 
377 using historical data from 1950 through 1979 from the GLM-HMD. For Q′ 

378 and D′ , as well as NBS ′ values for Lake St. Clair, we calculated hyper-
379 parameters using data from 1950 through 1979 from the CCGLBHHD. 
380 Similarly, we employed equation 10 as a prior probability distribution for 
381 bias in data sources for over-lake precipitation, over-lake evaporation, and 
382 runo (i.e. ηP , ηE , and ηR), and equation 16 as a prior probability distribution 
383 for bias in data sources for Lake St. Clair NBS ′ . However, we modifed the 
384 prior probability distributions for bias in channel fow and diversion data 
385 by calculating the prior probability distribution precision as τ = 1/σ2 and 
386 σ = λ � µ, where µ is the historical empirical monthly mean (of Q′ and D′), 
387 and λ is a coeÿcient of variation unique to a particular source of data for Q′ 

388 and D′ (table 2) refecting information we obtained from regional experts (for 
389 further information on expert opinion solicitation, see Borsuk et al., 2001; 
390 Voinov and Bousquet, 2010). 

391 2.2.4. Model inference and analysis 

392 We implemented three confgurations of our model, each with either a 
393 1-month, 6-month, or 12-month rolling inference window. We encoded these 
394 confgurations in JAGS (Just Another Gibbs Sampler; Plummer, 2003), and 
395 executed the JAGS model inference routine through the ‘rjags’ package in 
396 the R statistical software environment (R core team, 2017). JAGS is an open-
397 source, cross-platform engine of the BUGS (Bayesian inference Using Gibbs 
398 Sampling) language (Lunn et al., 2000) which has been applied in numerous 
399 Bayesian inference studies across a range of disciplines (Lunn et al., 2009; 
400 Kéry, 2010; Ntzoufras, 2011; Parkes and Demeritt, 2016). JAGS model code 
401 is included for reference in on-line supplementary material. 
402 We ran each model for K = 1,000,000 Markov chain Monte Carlo (MCMC) 
403 iterations across three parallel MCMC chains. We omitted the frst 500,000 
404 iterations as a ‘burn-in’ period, and then thinned the remaining 500,000 iter-
405 ations at even intervals such that each chain had 1,000 values. The resulting 
406 3,000 MCMC samples serve as the basis for our estimates of the posterior 
407 probability distributions for each model parameter. 
408 We evaluated each confguration by frst assessing homoscedasticity of 
409 model errors (i.e. ǫ), and then by assessing the extent to which inferred wa-
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410 ter balance components closed the water balance over di� erent time horizons. 
411 This evaluation allowed us to better understand relationships between the 
412 length of an inference rolling window, and the range of time horizons over 
413 which the corresponding model provides results that close the water balance. 
414 Some water management agencies, for example, need monthly water balance 
415 component estimates that are consistent with observed changes in lake stor-
416 age on only a month-to-month basis. Others, such as seasonal forecasting 
417 authorities, may be concerned with changes in the water balance over longer 
418 time horizons. 
419 We then used the inferred water balance component estimates (and other 
420 model parameters) from each model confguration to simulate the posterior 
421 predictive distribution (Gelman et al., 2002; Kruschke, 2013) of observed 
422 changes in lake storage (i.e. left side of equation 2). It is informative to note 
423 that after inferring monthly water balance components, we can use those 
424 components to simulate changes in lake storage over any time horizon; we 
425 are not, in other words, constrained to simulating over only 1, 6, and 12-
426 month windows (i.e. the time windows we used to infer the water balance 
427 components). To address potential water resources management planning 
428 needs over a range of time scales, we elected to calculate the posterior pre-
429 dictive distribution for observed changes in storage across consecutive time 
430 windows of 1 month, 12 months, and 60 months, all between 1980 and 2015. 

431 3. Results and discussion 

432 3.1. Model diagnostics 

433 3.1.1. Process model error distribution (i.e. homoscedasticity) 

434 Our assessment of monthly model process errors indicates that errors 
435 in the model confguration with a 1-month inference window (left column, 
436 fgure 2) refect signifcant seasonality, particularly for Lakes Superior and 
437 Michigan-Huron. This fnding indicates that there is an important mode of 
438 variability in the Great Lakes seasonal cycle that is not represented in water 
439 balance component estimates derived from a model with a 1-month inference 
440 window. 
441 The errors in the model confguration with a 6-month inference window 
442 also refect seasonality for Lakes Superior and Michigan-Huron, though not 
443 with nearly the same severity as the model with a 1-month inference window. 
444 It is interesting to note that model errors are relatively uniform for Lake Erie 
445 and Ontario for both the 1-month and 6-month confgurations. This fnding 
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446 most likely refects the fact that connecting channel fows represent a higher 
447 proportion of each lake’s water balance moving downstream through the 
448 system from Lake Superior to Lake Ontario. 
449 Errors in the model confguration with a 12-month inference window 
450 (right column, fgure 2) do not follow any noticeable seasonal pattern. There 
451 does, however, appear to be some evidence of a positive bias (where the 
452 mean model error is slightly less than zero) in models for Lakes Superior 
453 and Michigan-Huron, though this evidence is very weak (i.e. the uncertainty 
454 bounds suggest there is no evidence for error values other than zero). 

455 3.1.2. Long-term water balance closure 

456 We fnd that our model confguration with a 1-month inference window 
457 only closed the water balance when simulating changes in lake storage over 
458 a 1-month period (top row, fgure 3). When used to simulate changes in 
459 storage over consecutive 12- and 60-month simulation periods, water balance 
460 components from the model with a 1-month inference window accumulate 
461 severe biases and lead to very wide prediction intervals (middle row and 
462 bottom row, fgure 3). In contrast, we fnd that our model confguration 
463 with a 12-month inference window (fgure 4) consistently closes the water 
464 balance across consecutive 1, 12, and 60 month time horizons. 
465 Furthermore, the inferred water balance components, and their uncer-
466 tainties, may help identify months in which there is a need for additional 
467 information; perhaps in the form of expanded or improved monitoring in-
468 frastructure. Knowledge of how to either expand or consolidate monitoring 
469 infrastructure is critical to long-term understanding of hydrologic response, 
470 and the L2SWBM provides a potential pathway towards that understanding. 

471 3.2. Inferred water balance component values, data bias, and data error 

472 A visual assessment of a representative time series of inferred values of 
473 P , E, and R for Lake Erie from our model confguration with a 12-month 
474 rolling window (fgure 5) indicates that while inferred estimates are generally 
475 consistent with historical data, there are also important di� erences both 
476 among the historical data sets and between those historical data sets and our 
477 new estimates. For example, we fnd that runo � estimates from the GEM-
478 MESH system (bottom panel, fgure 5) tend to be systematically lower than 
479 those of the GLM-HMD in late winter and early spring. We also note that 
480 during periods when only one data source is available for a particular water 
481 balance component (i.e. Lake Erie evaporation in 2015, and Lake Erie runo �

15 



482 in 2014 and 2015), inferred estimates have a higher degree of uncertainty. 
483 Summary statistics for each water balance component and Lake (table 3) 
484 underscore the relative contribution of each lake’s water balance components, 
485 as well as their magnitudes relative to connecting channel fows. 
486 It is informative to note that multiple additional models and data prod-
487 ucts could have been either assimilated into our application of the L2SWBM, 
488 or used as an independent basis for comparison with our new inferred water 
489 balance components (i.e. fgure 5). The primary goal of this study, how-
490 ever, was to provide a robust demonstration of how the L2SWBM can close 
491 the water balance over multiple consecutive multi-month time steps. This 
492 demonstration provides a basis for future comparisons to (and perhaps as-
493 similation of) those products. A recent study using preliminary results from 
494 the L2SWBM provides a representative example of this potential (Gronewold 
495 et al., 2019). 
496 It is also worth noting that the larger uncertainty in bias for Lake Erie 
497 and Lake Ontario channel outfows refect overall uncertainty in the water 
498 balance for both lakes. Erie and Ontario have roughly a quarter of the surface 
499 area of Superior and Michigan-Huron (table 1). Thus, less water is required 
500 to raise and lower the water level for both lakes, and uncertainties in other 
501 components of their water balances can be magnifed. In the case of Erie and 
502 Ontario, channel fows are the dominant factor in the balance (table 3), and 
503 therefore any uncertainty in those estimates is magnifed in the model. In 
504 contrast, the individual models for Lake Superior and Lake Michigan-Huron 
505 can absorb greater amounts of uncertainty in water balance components with 
506 respect to the water level and their surface areas. 
507 An examination of inferred data bias and error estimates (fgure 6) further 
508 underscores the ability of our framework to reconcile disparate historical data 
509 sets, and to close the water balance of a large lake system. For example, the 
510 bias and error results indicate that CaPA over-lake precipitation estimates 
511 tend to be positively biased relative to the overall water balance, particularly 
512 in winter months. These results are interesting in light of previous fndings 
513 (Holman et al., 2012) suggesting that precipitation estimates across the Great 
514 Lakes based on terrestrial monitoring stations (such as those in the GLM-
515 HMD) misrepresent winter atmospheric stability dynamics over large lakes 
516 and are therefore expected to show a strong seasonal bias as well. 
517 We also fnd that both sources of legacy evaporation data (GLM-HMD 
518 LLTM and GEM-MESH) have seasonal biases (fgure 6) relative to the wa-
519 ter balance, with particularly severe biases in GEM-MESH evaporation es-

16 



520 timates for Lakes Michigan-Huron and Ontario. This is not entirely sur-
521 prising, given the challenge of accurately measuring (Blanken et al., 2011; 
522 Spence et al., 2011) and simulating (Fujisaki-Manome et al., 2017; Charu-
523 sombat et al., 2018) turbulent heat fuxes across the vast surfaces of the Great 
524 Lakes. These challenges are particularly pronounced in the fall months; a 
525 period when evaporation rates increase rapidly, and when there can be sig-
526 nifcant year-to-year variability (Lenters, 2001; Spence et al., 2013). 

527 4. Conclusions 

528 We developed, tested, and applied a new Bayesian statistical analysis 
529 framework that reconciles the water balance of large lake systems. We here-
530 after propose formally referring to this product as the Large Lake Statistical 
531 Water Balance Model (or L2SWBM). Signifcant contributions to hydrolog-
532 ical modeling represented by the new L2SWBM include explicit closure of 
533 the water balance over multiple time horizons through the use of a fxed-
534 length rolling window, and a formulation for monthly model error distinct 
535 from water level measurement error and water balance component estimate 
536 uncertainty. We have also demonstrated how the L2SWBM can incorporate 
537 expert opinion through informative prior probability distributions on the bias 
538 in historical measurements of certain water balance components. 
539 It is informative to note that our framework was recently adopted by 
540 Great Lakes regional management authorities, including the United States 
541 Army Corps of Engineers, and Environment and Climate Change Canada, 
542 as a step towards generating a new set of internationally-coordinated water 
543 balance component estimates for the entire Great Lakes system. It is our 
544 understanding that our framework is the frst to provide a defnitive approach 
545 to reconciling di� erences between water balance estimates for this system, 
546 and for closing the water balance over multiple time periods. 
547 Moving forward, we anticipate applying the L2SWBM to other large lakes 
548 and large lake systems around the world. We recognize that, for many global 
549 lake systems, water balance data sets are based on sparse monitoring net-
550 works. In some cases, monitoring networks are nonexistent, and coarse model 
551 simulations are used to provide estimates of a lakes water balance compo-
552 nents. The L2SWBM provides an ideal platform for utilizing any available 
553 information about a lake’s water balance to reconcile changes in storage, and 
554 to explicitly allocate uncertainty and bias within historical data and water 
555 balance component estimates. As another potential future step in the evolu-
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556 tion of the L2SWBM, we envision replacing water balance component terms 
557 (e.g. P , E, and R) with physically-based models. Potential examples include 
558 replacing the term for evaporation E in equation 1 with a lake surface energy 
559 balance model based on eddy di� usion (Hostetler and Bartlein, 1990), a for-
560 mulation of Penman or Priestley-Taylor equations (Penman, 1948; Priestley 
561 and Taylor, 1972), or the Surface Energy Balance System (Su, 2002). This 
562 approach would allow direct approximation of parameters for those models 
563 that are faithful not only to governing physical processes and environmental 
564 observations, but to the water balance of a lake (or system of lakes) as well. 
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Figure 1: The Laurentian Great Lakes basin (shaded region) including location of ma-
jor cities, interbasin diversions, and connecting channels (Source: NOAA-GLERL and 
USACE-Detroit). 
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Figure 2: 95% credible intervals for model process errors ǫct from model confgurations 
with a 1-month inference window (left), 6-month inference window (center), and a 12-
month inference window (right). 
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Figure 5: Comparison between newly-derived water balance component estimates from 
our model for Lake Erie confgured with a 12-month inference window (vertical grey bars 
representing 95% credible intervals) and corresponding observations from legacy regional 
data records and models (blue and red horizontal dashes). Results are presented only for 
years 2010 through 2015 for clarity. Additional results are included in online Supplemen-
tary Material. 
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Lake Surface Area (km2) 

Superior 81,925 
Michigan-Huron 116,850 

St. Clair 1,109 
Erie 25,404 

Ontario 19,121 

Table 1: Surface areas for each of the Laurentian Great Lakes (for details, see Hunter 
et al., 2015). 
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Channel Flow or Diversion λ Mean SD 
(cms) (cms) 

Superior Outfow (St. Marys River) 0.02 2,111 494 
Superior Diversion (in, via Ogoki & Long-Lac) 0.04 145 83 
Michigan-Huron Outfow (St. Clair River) 0.03 5,189 636 
Michigan-Huron Diversion (out, via Chicago) 0.04 133 66 
St. Clair Outfow (Detroit River) 0.03 5,323 637 
Erie Outfow (Niagara) 0.02 5,784 666 
Erie Diversion (Welland Canal) 0.04 159 80 
Ontario Outfow (St. Lawrence River) 0.02 6,949 931 

Table 2: Coeÿcients of variation (λ), and historical mean and standard deviation of 
monthly average values used in empirical estimation of prior standard deviation on the 
bias in historical data sources for channel fows and diversions on the Great Lakes. Channel 
fow estimates are from data collected from 1900 through 2010. Chicago River diversion 
estimates are based on data available from 1900 through 2008, Ogoko & Long-Lac diversion 
estimates are based on data available from 1939 to 2012, and the Welland Canal diversion 
estimates are based on data from 1900 through 2012. 
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Average annual values, 1980-2015 
(in mm over lake surface area) 
P E R Q 

Superior 766.97 540.52 621.14 808.43 
Michigan-Huron 823.29 535.72 689.99 1441.06 

Erie 891.67 854.14 842.70 7454.20 
Ontario 854.57 669.57 1664.14 12102.40 

Table 3: Average annual totals for major water balance components on each of the Great 
Lakes from 1980 to 2015 based on our new L2SWBM results. 
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Variable or parameter Data source and reference(s) Years used 

y�H CCGLBHHD (Gronewold et al., 2018) 1980 - 2015 
1yP 
2yP 

µP , µln(P ) 

GLM-HMD (Hunter et al., 2015) 
CaPA (Lespinas et al., 2015) 
GLM-HMD (Hunter et al., 2015) 

1980 - 2015 
2006 - 2015 
1950 - 1979 

1yE 
2yE 

µE 

GLM-HMD; LLTM (Hunter et al., 2015) 
GEM-MESH (Deacu et al., 2012) 
GLM-HMD; LLTM (Hunter et al., 2015) 

1980 - 2015 
2004 - 2014 
1950 - 1979 

1yR 
2yR 
2yR 

µln(R) 

GLM-HMD; ARM (Hunter et al., 2015) 
GEM-MESH (Superior and Michigan-Huron) 
GEM-MESH (Erie and Ontario) 
GLM-HMD; ARM (Hunter et al., 2015) 

1980 - 2015 
2004 (June) - 2009 
2004 (June) - 2013 

1950 - 1979 
1y NBS′

2y NBS′

3y NBS′

µNBS ′

GLM-HMD (Hunter et al., 2015) 
GEM-MESH (Deacu et al., 2012) 
CCGLBHHD Residual (Gronewold et al., 2018) 
CCGLBHHD Residual (Gronewold et al., 2018) 

1980 - 2015 
2004 (June) - 2012 

1980 - 2015 
1950 - 1979 

1yQ′ 

2yQ′ 

µQ′ 

CCGLBHHD (Gronewold et al., 2018) 
IGS (for St. Marys, St. Clair, and Detroit Rivers only) 
CCGLBHHD (Gronewold et al., 2018) 

1980 - 2015 
2008 (Nov) - 2014 

1950 - 1979 
yD′ 

µD′ 

CCGLBHHD (Gronewold et al., 2018) 
CCGLBHHD (Gronewold et al., 2018) 

1980 - 2015 
1950 - 1979 

839 APPENDIX A - Data 

840 This Appendix includes a summary (Table A1) of data sources for popu-
841 lating water balance component “observations” (y) and for calculating prior 
842 probability distribution hyperparameters. 

Table A1: Summary of data sets used in our study. Unless indicated otherwise, date 
ranges include the entire calendar year. Variable defnitions are included in table B1. 
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843 APPENDIX B - Notation 

844 A summary of notation used in our study is included in table B1. 
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�38 

Symbol Description 

Indices and related variables 
c(t) Calendar month c 2 [1, 12] of time step t 
i Index for months within a water balance window of length w 
j Index j 2 [1, T − w + 1] for the frst month of a rolling window 
l Index for an individual lake; l 2 [SUP, MHU ] 
n Index of data sources for a particular water balance component; n 2 [1, N ] 
N Total number of data sources for a water balance component (in this study, typically 2) 
t Index for month number in the sequence [1, T ] 
T Total number of months in study. Here, T = 120 (January 2005 through December 2014) 
w Length of rolling window (in months) for water balance inference 
“True” (unobserved) monthly average water balance components (all in mm over lake surface) 
�Hl,j,w Change in water level for lake l from beginning of month j to beginning of month j + w 
Dl,t Monthly diversion from lake l in month t 
El,t Evaporation from lake l in month t 
Il,t Connecting channel infow for lake l in month t 
Pl,t Precipitation over lake l in month t 
Ql,t Connecting channel outfow for lake l in month t 
Rl,t Basin runo into lake l in month t 
θ A parameter from � 
� The parameter set P, E, R, Q, D 
Data and model-based estimates (subscript l removed from each for clarity) 
yH,t Water level measurement at beginning of month t 
y�H,j,w Observed water level di� erence from beginning of month j to beginning of month j + w 
ny�,t nth estimate of θt 

Prior probability distribution parameters (subscripts l and c(t) removed from each for clarity) 
µE, µQ, µD Historical empirical mean of E, Q, and D from the GLM-HMD 
µln(R) Historical empirical log-mean of R from the GLM-HMD 
τE , τQ, τD Historical empirical precision of E, Q, and D from the GLM-HMD 
τln(R) Historical empirical precision of natural logarithm of R from GLM-HMD 
ψ1 , ψ2 Shape and rate parameters for π(P ) 
Hyperparameters (subscripts l removed for clarity) 
ǫt = ǫc(t) Water balance model process error for calendar month c(t) 
ηn �,c(t) 

nSeasonal bias of y by calendar month c(t)�,t 

τ�H,w Precision of y�H,j,w for all j 
τn � 

nPrecision of y (for all t)�,t 

Table B1: Summary of notation used in our study. 
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